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Motivation:

● HTS offers performance advantages allowing circuits designs and con-
cepts that can not be realized by conventional technologies
● design, fabrication, and packaging techniques are pushed beyond

their capabilities to deliver a device or circuit that performs as de
sired.

● techniques are required to adjust the performance characteristics of
a device or circuit after it is fabricated and assembled in order to
compensate for these errors.

● Emerging microwave systems are simultaneously requiring frequency
agility and higher performance
● HTS is a natural to satisfy the performance criteria
● conventional tuning technologies often have losses which would off-

set the natural advantages of HTS
● there is a clear need for tuning technologies which are compli-

mentary to HTS performance

● Developing high performance tunable HTS microwave circuits and sys-
tems will create a viable HTS market
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Motivation (cont.):

● Consider a hypothetical case:  An HTS filter in stripline:
● center frequency is 1.0 GHz
● bandwidth is 1.0 MHz (0.1%)
● good passband shape requires multiple poles controlled to 0.1 MHz
● required accuracy in 1 part in 10000 = 0.01%

● What are the implications for realizing this design?

● The lengths of our stripline resonators are going be determined by the
phase velocity, vp = (L/C)1/2

● Requiring 0.01% accuracy for phase velocity means controlling C to
0.02% which requires
● a 250 µm thick substrate be accurate to ± 25 nm  

● the relative dielectric constant of MgO be accurate to ± 0.002

● More complicated calculations will give the accuracy to which the thick-
ness of the HTS, the penetration depth, and Tc must be controlled

● Parasitics, and design tool limitations will only complicate the problem
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Distinction Between Trimming and Tuning:

● Trimming: A post fabrication and assembly technique to adjust the de-
vice characteristics to match as closely as possible the designed char
acteristics. Trimming compensates for 
● processing tolerences
● design tool limitations and errors
● variations in substrate thickness, dielectric constant, etc.
● deposition run variations in HTS thickness, penetration depth, etc.
● packaging parasitics

● Trimming techniques:
● mechanical – usually screw adjustment

• requires flexible mechanical access while device is cold
• can use metal or dielectric to inductively or capacitively tune

● electrical – requires biasing lines which adds parasitics 
• ferroelectrics
• ferrites
• etc.
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Distinction Between Trimming and Tuning (continued):

● Tuning: The ability to modify the performance or characteristics of a de-
vice in real time on a continuing basis as part of its normal operational
use.  Uses could include 
● phase shifters and delay lines
● tunable filters

• center frequency
• pass band
• zero positioning
• notch

● Tuning techniques:
● mechanical – servo/stepping motor
● electrical – requires biasing lines which adds parasitics 

• ferroelectrics
• ferrites
• MEMS
• GMR/CMR
• semiconductor
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Comparison of Filter Response at 200K (solid) and 300K (dashed)
(filter was tuned at room temperature)
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Comparison of Filter Response at 200K (solid) and 100K (dashed)
(filter was tuned at room temperature)
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Temperature Dependence of the Center Frequency and
Insertion Loss After Tuning at Room Temperature
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Modified Tuning Screw Design for Cryogenic Tuning
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A Plexiglass Desiccator Cover for Visual and
Mechanical Access (Rotation, Wobble, and Linear)
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Simple Mechanical Feedthrough (Rotation, Linear, and Wobble)
for Tuning Input and Output Coupling Antennas
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Measured Filter Response after Tuning at 150 K
(tuning of all six resonant frequencies and four coupling coefficients)
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Measured Cryogenic Receiver Passband Characteristics
Transmission and Reflection Response at 130K

(tuning of all six resonant frequencies, four coupling coefficients,
and input and output antennas)
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Measured Cryogenic Receiver Passband Characteristics
Transmission and Reflection Response at 120K

(tuning of all six resonant frequencies, four coupling coefficients,
and input and output antennas)
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Passband Charateristics at 120K (solid) and 300K (dashed)
(Receiver Tuned at 120K and then Thermally Cycled Several Times

Before Measurement at 300K)
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Tuning Issues: Need to obtain the advantages of tuning device
properties without degrading performance

● Speed of tuning
● some applications have no real speed requirement (e.g. tuning a fil-

ter transmission zero to knock out a constant interferring signal)
● some applications have very fast (<< 1µsec) tuning requirements

(e.g. phased arrays

● Microwave Losses
● loss in the tunable media or device itself
● parasitic losses associated with biasing circuitry

● Tunability
● % change in reactance of tunable media or device
● % change in device characteristics (center frequency)

● Figure of Merit
● commonly defined as: 2Q∆f/f
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Tuning Issues (continued): Need to obtain the advantages of
tuning device properties without degrading performance

● Design and Fabrication
● design complicated by biasing circuitry
● materials compatability issues especially with cryogenic cycling

● Cryogenic system impact
● dissipation in tuning media/element increases thermal load
● control leads increase thermal load

● Signal strength considerations
● power handling capacity of tuning media/element
● nonlinearities contribute to mixing and increase IP3
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K& L Microwave Tunable Dielectrically Loaded Waveguide Filter

● Individual stepper motors for each resonator

● Five pole filter tunable from 750 to 850 MHz

● 3 dB bandwidth = 0.953 MHz (0.12%)

● Typical tuning range is 18%

● 1.72 dB insertion loss

● ~15 s to tune across the band

● Unloaded Q between 15000 and 28000
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Ferrites for Tuning:

● One of the most popular room temperature “control component” tech-
nologies for phase shifters, circulators, etc.

● Many standard room temperature microwave ferrites exhibit high loss at
cryogenic temperatures.  Some solutions do exist with careful material
preparation

● Switching speed are > 1 µsec

● Usually requires “bulk” ferrite in order to have large enough % of the
field in the ferrite to get reasonable tuning range.  Thin films are less
promising.

● Good combination of low loss tangent (high Q) and tuning range yields
good figure of merit (170 with HTS)

● Considerable development and a very promising solution for practical
application to many real world problems
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The Problem
Overloaded Radar Front End

Solution
Frequency-agile protection for sensitive front end

Low-loss
Tunable Filter

Low-Noise
Amplifier

To 
Down-
converter

From
Antenna

¥ Tunable filter to accommodate frequency agility
¥ Tunable notch filter also possible
¥ Conventional solution: YIG and varactor filters 

Requirements

¥ Low loss for low noise figure and high sensitivity
¥ Sharp skirts for strong suppression
¥ Fast tunability for frequency hopping
¥ Highly linear operation to prevent spurious signals

Superconducting filters in compact geometry
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Superconductor/Ferrite Tunable Devices
Principle of Operation

¥ Tunability by permeability of ferrite
¥ Low loss at microwave frequencies
¥ Use of hysteresis loop yields low-field

and low-energy tuning
¥ Closed magnetic circuit (not shown)
¥ Low-field tuning (compared with

resonant devices) gives rapid tunability

Superconducting
transmission line

Ferrite
substrate

RF  magnetic field

DC magnetization
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Outline

¥ Motivation
¥ Principle of operation
¥ Results

Ð Niobium (low-Tc) on polycrystal ferrite
Ð YBCO (high-Tc) on ferrite by IBAD

¥ Switching speed measurements
¥ Future work
¥ Summary
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Tunable Niobium Resonator
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¥ Figure of merit = 2Q∆f/f =300
¥ Q Limited by ferrite

¥ Tunability by permeability of ferrite
¥ Low-loss ferrites
¥ Low-field and low-energy tuning
¥ Rapid tunability
¥ Closed magnetic circuit (not shown)
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YBCO Resonator

Resonator Frequency and Q
T= 77 K

¥ Figure of merit = 2Q∆f/f = 170
with YBCO and 300 with
niobium

¥ Q Limited by radiation

Tunable YBCO/Ferrite Resonator
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Initial Results
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High-Tc Material Deposition

¥ YBCO and other high-Tc materials need to be grown
epitaxially on a lattice-matched substrate

¥ Impossible directly on polycrystalline ferrite
¥ Ion-beam assisted deposition (IBAD) produces oriented

buffer layer on noncrystalline substrates
¥ High-quality YBCO can be grown on buffer layer
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Power Handling IBAD YBCO
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Outline

¥ Motivation
¥ Principle of operation
¥ Results resonators and filters
¥ Switching speed measurements
¥ Future work
¥ Summary



MIT Lincoln Laboratory
GOMAC99-13

D.E.Oates 8/27/99

-0.30

-0.15

0

0.15

0.30

0 0.25 0.50 0.75

0

1.0

2.0

Tunable Resonator with Closed
Magnetic Circuit

¥ Closed magnetic circuit for
large tuning range and low-
energy sub-µs tuning time

Time (µs)

R
F

 a
m

p
lit

u
d

e 
(V

)

C
u

rr
en

t 
p

u
ls

e 
am

p
lit

u
d

e 
(A

)

 200 ns

Tuning coil

Ferrite 
substrate Niobium 

microstrip

-80

-60

-40

-20

0

9.0 9.5 10.0 10.5 11.0
Frequency (GHz)

Re
la

tiv
e in

se
rt

io
n lo

ss
 (d

B )

Saturated

Unmagnetized
0.8 GHz



MIT Lincoln Laboratory
GOMAC99-14

D.E.Oates 8/27/99

High-µ
material

Magnetizing
coil

Ferrite
substrate

Ferroelectric
trimming

YBCO 
resonators

Superconductor/Ferrite Tunable Filter
with Ferroelectric Trimming
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Summary of Superconductor/Ferrite
Filters

¥ Tunable 3-pole filter with IBAD YBCO on polycrystalline
ferrite at 77 K

¥ For niobium at 4 K:
Ð Adequate tunability > 10%
Ð 3-pole 1%-bandwidth filter with <1-dB insertion loss
Ð 3rd-order intermods -60 dBc at +10 dBm input
Ð High Q resonators

  > 5000 at 10 GHz

Ð Figure of merit 2Q∆f/f
 > 300 demonstrated
 > 1000 projected

Ð High-speed tuning
− τ < 200 ns

Demonstrated Features
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Further Work

¥ Extend filter to 4 or 5 poles
¥ Narrower bandwidth
¥ Improve ferrite loss and tunability with modified ferrites
¥ Higher-Q material including single crystals
¥ Improved YBCO on ferrite
¥ Trimming with ferroelectrics
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Tuned filter-1
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Superconductor/Ferrite Tunable Filter

Experimental Results

3-Pole Tunable Filter

Ferrite magnetization

Ferrite substrate Niobium 
resonators

1.35 GHz

¥ 3-Pole 1%-bandwidth filter
¥  >10% tunability
¥  Third-order intermods -60 dB at +5 dBm
¥  Niobium resonators at 4 K
¥  Will be extended to YBCO at 77 K

-80

-60

-40

-20

0

10.0 10.5 11.0 11.5 12.0

Frequency (GHz)

In
se

r t
i o

n 
L o

ss
 (d

B )



MIT Lincoln Laboratory
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Oates 8/27/99

Superconductor/Ferrite Tunable Filter
with Ferroelectric Trimming

¥ Compact, X-band, 3-pole, 1%-bandwidth filter
¥ Tunability 10% 
¥ Tuning time 1 µs
¥ Low-energy tuning
¥ Insertion loss less than 1 dB 

Program Goals

Bias pads
for trimming

Ferrite
magnetization

YBCO resonators

Ferrite substrate

Ferroelectric 
overlays

Proposed 3-Pole Tunable Filter
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Ferroelectrics for Tuning:

● Large relative permittivity leads to to field concentration in ferroelectrics.
Thin films are a viable approach

● Many metal-oxide based ferroelectrics (e.g. SrxBa1-xTiO3) have struc-
tural similarities to HTS materials and are amenable to similar deposi
tion processes and are compatible

● Switching speed are theoretically less than 1 nsec.  Potentially a very
fast technology.

● Much of the material development is presently focused at room tem-
perature operation but should transition to cryogenic applications

● Figure of Merit of > 20 from recent room temperature measurements

● Virtually no current (except when changing bias) means lightweigth
power supply, thin bias lines, low thermal load
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High-T C Electronics Project
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Summary of Dielectric Film Measurements at Microwave 
Frequencies using Wafer Probing Techniques at NIST, Boulder 

300 nm thick Au lines
53 µm center conductor

101 µm gap
LaAlO 3 substrate

Measured at room temp.

300 nm thick Au lines
53 µm center conductor

101 µm gap
LaAlO 3 substrate

Measured at room temp.
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Summary of Dielectric Film Measurements at Microwave 
Frequencies using Wafer Probing Techniques at NIST, Boulder

•Approach:  Compare propagation constant 
measurements of samples with and without dielectric 
thin film

•Obtain capacitance and conductance per unit length 
from propagation constant data for fixed temperature, 
bias voltage.
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MEMS for Tuning:

● Last few years has seen explosion in application of MEMS to rf and mi-
crowave systems – much of the effort is foced on switches

● Most development is focused at room temperature operation.  Often Si
based technology since the potential market is large.

● Only relatively recently have there been efforts made to apply this tech-
nology to tuning HTS – little is publically available

● Switching speed are approaching 1 µsec.  Competitive with ferrites.

● Transmission line conductor losses determine attenuation in 300K
MEMS phase shifter – HTS has potential for substantial performance
improvement

● Issues for application to HTS tuning include:
● coefficient of thermal expansion matching
● temperature dependence/difference of mechanical properties of

materials
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Voltage Actuation of MEMS Bridge
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Optimal Distributed MEMS Transmission Line 
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Conclusions:

● Trimming is often necessary in high performance HTS circuits
● it can be designed into package while preserving performance
● apparatus for trimming at cryogenic temperatures is relatively easy

● Tuning of HTS devices & circuits is receiving a great deal of R&D effort

● Ferrite tuning is the most developed and exhibits the best performance
● useful tuning range demonstrated
● tuning speed is fast enough for many applications
● losses are encouragingly low and can expect to improve

● Considerable R&D investment in ferroelectric tuning shows promise
● complicated materials systems is difficult to understand
● has promise of very fast tuning speeds
● need to improve tuning range of materials with high Qs

● MEMS tuning holds great promise but needs investment

● Tunable HTS technology has great potential
● lots of good R&D is needed in the near term
● very good prospects for a viable market in the longer term
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Conclusions (cont.):

● Research needed to address
● understanding and control of microwave losses in ferrites and

ferroelectrics at cryogenic temperatures
● mechanical properties of materials at cryogenic temperatures for

MEMS applications
● novel circuit topologies which can leverage these technologies
● new tuning technologies and concepts

● Practical applications of these technologies will require development in
the areas of:
● materials compatibility over extreme temperature ranges and

multiple thermal cycles
● biasing circuits (techniques, layouts and design rules) that will

preserve microwave performance
● packaging
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