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 Pseudopotential Methods for Superlattices

II.  Physics of Bulk Solids - The EPM

•  Direct lattice / Reciprocal lattice
•   Schroedinger equation in reciprocal lattice space
•   Bands for GaAs / fitting the pseudopotential

III.  Physics of Superlattices - EPM & Offsets

•  Representing the superlattice potential
•   SE for the superlattice
•   Solutions: subband energies and wavefunctions

IV.   Summary
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I.   Concerns with the Standard Model (         &  EFA )Pk ⋅
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•           method is only good near Γ-point. Localized states requirePk
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• Wavefunctions are replaced with envelopes. Do we assume
   Bloch Functions from material A or B ?  What     value ?k

r

• Interface boundary conditions for envelopes are controversial.

• Monolayer details are missing - No exact placement of atomic
   planes are allowed.

[D. M. Wood, A. Zunger, Phys. Rev. B, 53, 7949, (1996).]
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(Matrix elements for type II ??)



L Γ X

( )pk ⋅ ofBreakdown 

GaAs
(e

V
)



 Direct Lattice / Reciprocal Lattice

• Direct lattice is defined by “Primitive Translation Vectors”

• Lattice potential is the same at rr ′rr
 and 
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              -  lattice translation

II. Physics of Bulk Solids
 The Empirical Pseudopotential Method (EPM)



Consequences for Lattice Potential

• Translation invariance puts significant constraints on ( )V r
r
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• Consider Fourier Expansion of ( )V r
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Tremendous reduction in required Fourier Coefficients



• Amazing fact - we get excellent results with only 15 values of
                                  (15 x 15 matrix):bg
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Bloch’s Theorem in       Space−g
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Schroedinger Equation in       Space−g
r

15 x 15 Matrix Eigenvalue Equation
(Spin-Orbit              30 x 30) 

V0 - does not matter in bulk
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III. Physics of Superlattices

•  Representing the superlattice potential (two layer period):
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Schroedinger Eq. for the superlattice
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Example 1 - Comparison to Tight-Binding Calculation

(Chang & Schulman, Phys. Rev B-31, 2069, (1985))

Superlattice - (GaAs)69(Al.2Ga.8As)71
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Example 2: Type II (Broken Gap) InAs/GaSb QW Structure 
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  6 Ang                1.78           1.79          12195

12 Ang                2.12           2.28          5850

18 Ang                2.43           2.93          3454

24 Ang                       2.90           3.79         2387

InAs
QW Width

( )mµλ ( )mµλ
(Experimental) (Theoretical)

2µ (eV-cm)

 Type II (Broken Gap) InAs/GaSb QW Structure
(Baranov, et.al. Appl. Phys. Lett. 71, (6), 1997) 

140 meV offset 

Experimental data shows a band filling blue-shift that
increases as type II wavefunction overlaps decrease











IV. Summary

•  We have directly extended the EPM to superlattices
    (No EFA, Boundary condition problems or small momentum limits)

•  Each material is fit with six       , Γ (adjusted for spin-orbit) and     .
    (           requires eight parameters)

•  Total wavefunctions are found and matrix elements are readily
    calculated in          space with      dependence.
    (           only gives envelope)

•  Method is easily extended to N-layer period.

•  Method is easily extended to deal with coherent strain.

•  Method works where           and EFA are suspect:
    Thin layers and IVB absorption require accurate deep valence
    subbands.
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